

# **Neurological emergencies 1**

# Status epilepticus Respiratory Failure in Neuromuscular Weakness

# Michael O'Donoghue







### **STATUS EPILEPTICUS**

Initial investigations and components of management

including airway protection and use of anti-epileptic drugs

### **NEUROMUSCULAR EMERGENCIES**

Clinical signs which point to neuromuscular ventilatory compromise

Bedside respiratory test of most use

Describe the findings on arterial blood gas which reflect type II respiratory failure

> As an F1 Recognise these emergencies, initiate management and call for expert help



Case





35 male on acute medical ward admitted overnight with seizures Not yet fully assessed



It is 05.30 : 2 more tonic-clonic seizures lasting 6 minutes in last 30 minutes



Buccal midazolam 10mg given by nurse 10 minutes ago He is GCS. E1 V2 M 5 You are called as F1



What do you think about as you arrive? Write down some key steps



MF O'Donoghue

# **Status epilepticus**



Requires speedy systematic simultaneous assessment

ABCDE: Airway - Breathing - Circulation - Disability - Exposure

Termination of seizures

Search for cause

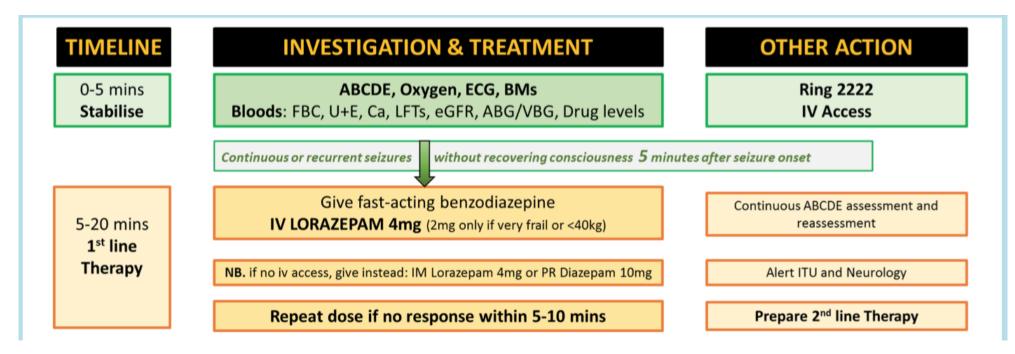
Follow the NUH protocol

New seizures v Status in known epilepsy has differences

Convulsive status epilepticus is the focus here; non-convulsive status more subtle and you have more time



## **Step 1 - assume low GCS due to repeated seizures**

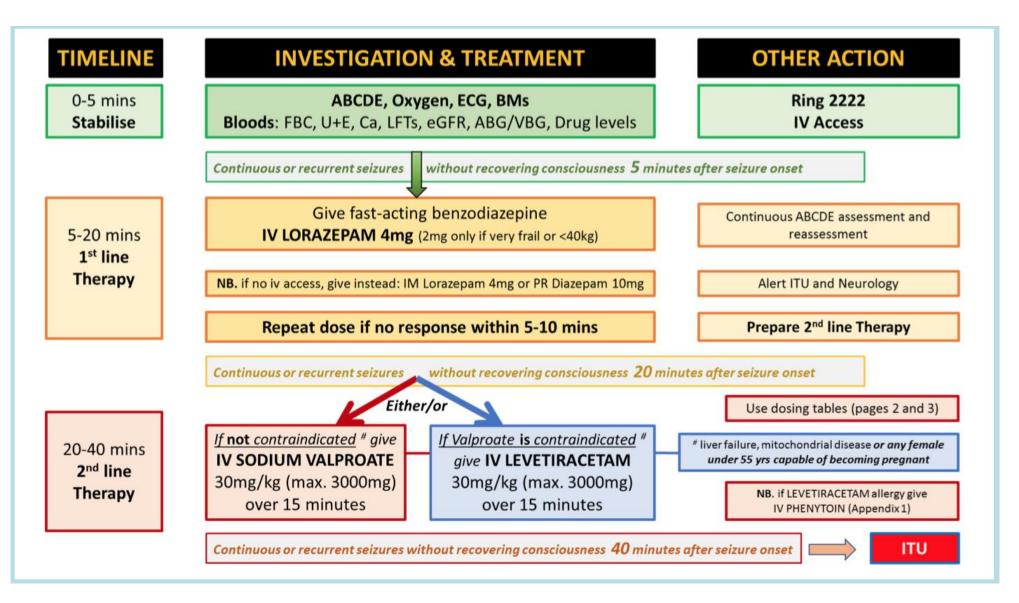

| IMELINE                      | <b>INVESTIGATION &amp; TREATMENT</b>                                              | OTHER ACTION           |
|------------------------------|-----------------------------------------------------------------------------------|------------------------|
| 0-5 mins<br><b>Stabilise</b> | ABCDE, Oxygen, ECG, BMs<br>Bloods: FBC, U+E, Ca, LFTs, eGFR, ABG/VBG, Drug levels | Ring 2222<br>IV Access |
|                              | Continuous or recurrent seizures without recovering consciousness 5 minutes       | after seizure onset    |

- 1. Secure the airway this may be obstructed due to low GCS (seizure or drugs)
- 2. If needed use nasopharyngeal / oropharyngeal airway (if GCS very low)
- 3. Give oxygen via mask
- 4. Measure Pulse and BP and O2 Saturation
- 5. IV access
- 6. Measure blood glucose
- 7. Send blood for Na, Ca, Mg, venous gas sample, FBC, LFTs





# Step 2 assume he starts having convulsive seizures again




IV Lorazepam 2 - 4 mg over 60 seconds

If this is the second benzodiazepine  $\rightarrow$  definitive second line drug added



# Step3 Full NUH protocol



Note doses may increase LEV 60mg/kg SVP 40mg/ g After ESET

# Step 4. Assess response



- 1. Are seizures controlled?
- 2. If not seek help! is this epilepsy or non-epileptic attacks?
- 3. Have serious causes been sought?
- 4. Alert ITU if seizures not controlled



# Finding the cause

## Previously known epilepsy

- 1. Low AED levels (compliance)
- 2. Infection

Often appropriate to reload IV with previous AED:

Phenytoin, Valproate, Levetiracetam, Lacosamide can be given IV

Not possible with lamotrigine, carbamazepine and several other



# Finding the cause of SE

New epilepsy

- 1. Viral Encephalitis
- 2. Structural cause
- 3. Toxic (drugs and alcohol)
- 4. Metabolic
- 5. Autoimmune

### POST STATUS ALGORITHM

#### IDENTIFY AND TREAT CAUSE OF STATUS EPILEPTICUS

Potential Causes are listed on Page 5

#### Investigations

- Brain imaging (CT quicker)
- CSF examination (if there is no

history of seizures or obvious cause)

### Also consider:

- · Anti-epileptic drug levels
- MRI brain / MR venogram
- EEG
- Septic screen
- CXR if suspected aspiration
- Pregnancy test in women of childbearing age
- · Toxicology screen, alcohol levels
- Serum ammonia
- Serum lactate
- Other more specialist tests e.g.
  VGKC antibodies (seek Neurology advice first)

### PLAN REGULAR ANTHEPILEPTIC DRUGS

#### Start maintenance anti-epileptic drugs

#### within 4-8 hours of loading:

- Sodium Valproate\* Oral, NG and IV doses are 1000mg twice a day
- See Appendix 2, pg.8 for details
- Levetiracetam Oral, NG and IV doses are 1000 mg twice a day; reduce doses in renal failure
- See Appendix 2 pg.8 for details

#### Always continue the patient's existing

### anti-epileptic drugs

 Many of these have liquid or dispersible formulations if there is no oral route (see Appendix 3).

#### Please Refer all patients with Status Epilepticus to the on-call Neurology Registrar

### **Referrals are made**

via Switchboard 9am - 5 or via Medway/Notis out of nurs using the order term 'SEIZURE'

### POTENTIAL CAUSES OF STATUS EPILEPTICUS

| Infection:      | Infection/sepsis, encephalitis (most commonly herpes virus), |  |
|-----------------|--------------------------------------------------------------|--|
|                 | meningitis and cerebral abscess                              |  |
| Vascular:       | Ischaemic stroke, intracerebral or subarachnoid haemorrha    |  |
|                 | cerebral venous sinus thrombosis, hypertensive               |  |
|                 | encephalopathy, posterior reversible encephalopathy          |  |
|                 | syndrome (PRES)                                              |  |
| Inflammatory:   | Limbic encephalitis, demyelinating diseases or immune-       |  |
|                 | mediated disorders                                           |  |
| Metabolic:      | Acute metabolic disturbances (most commonly sodium,          |  |
|                 | calcium, magnesium and glucose), hypoxia/cardiac arrest      |  |
| Trauma:         | Head injury                                                  |  |
| Neoplasia:      | Cerebral tumour (primary or secondary)                       |  |
| Paraneoplastic: | Some types of encephalitis                                   |  |
| Degenerative:   | All dementia syndromes                                       |  |
| Congenital:     | Idiopathic epilepsy, developmental anomalies of cerebral     |  |
|                 | structure (e.g. focal cortical dysplasias)                   |  |
| latrogenic:     | Non-concordance (forgetting or omitting medication)          |  |
| Lifestyle:      | Alcohol, illicit drugs, 'legal highs'                        |  |
|                 |                                                              |  |









ITU

## Intubation and anaesthesia aiming for "burst suppression" under EEG



# Mid point check: status epilepticus



- 1. What are the things to do on arrival in SE?
- 2. What are the drugs + doses of choice after benzodiazepines?
- 3. List 4 causes of new onset SE



Case







MF O'Donoghue

# Type 1 and Type 2 Respiratory failure



### **Important Normal values**

PaO2 10.6 - 13.3 kPa

PaCO2 4.8 – 6.1. kPa

pH 7.35 – 7.45

Bicarbonate 22 – 26 mmol/l

Respiratory rate 12-20/min

Vital capacity (max inspiration-max expiration)

50ml/kg (3-5L average)

Drop VC upright – supine 10%

### Type 1

Low 02 Respiratory Failure

A failure of gas exchange at alveoli

e.g. acute lung pathology, PE

Type 2

High CO2 and low O2 respiratory failure

A failure to ventilate the alveoli

Common in COPD and Neuromuscular weakness



# Neuromuscular respiratory weakness



- 1. Respiratory weakness kills
- 2. Acute and chronic neuro muscular respiratory failure differ

### Acute

Guillain Barre syndrome, Myasthenic crisis

## Chronic

MND, Myotonic dystrophy and other chronic myopathies







### Acute

Signs of acute neuromuscular respiratory failure

PaCO2 > 6 kPa and pH <7.35 normal or low bicarbonate

### Chronic

Signs of chronic hypercapnia and nocturnal hypoventilation

PaCO2 > 6 normal pH and bicarbonate >26mmol/l





**Diaphragm** is the main muscle of ventilation

Respiratory failure may not be evident until diaphragm 30% function

Weakness of Diaphragm  $\rightarrow$  breathless when flat + use of accessory muscles

Weak internal intercostal and abdominal muscles  $\rightarrow$  weak cough

Weak bulbar muscles  $\rightarrow$  Cannot clear secretions

Infection can precipitate respiratory failure



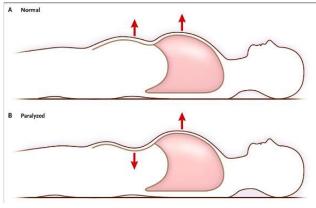
# Signs of acute neuromuscular respiratory failure



Breathless and increased respiratory rate (>20)

Accessory muscle use (SCM, chest wall muscles, Intercostal)

Cannot speak in sentences or count 1 to 20 slowly


Cannot lie flat

Paradoxical diaphragm movement

Associated weak face, palate, neck, sniff, cough

Tachycardia, sweating and may have flap

If very severe: confusion due to hypoxia (<8pKa) and high CO2 (>7pKa)



NEJM



MF O'Donoghue

## Assessment



### Vital capacity the best predictor

Should be above 20ml/kg:

For 70 kg person: 1.5l or less is a serious concern

Drop of >20% upright to supine suggests diaphragm paralysis

Practical Problems: accessing a VC machine and getting good measurement (lip seal)

If you can count 1 to 20 out loud 1/s probably OK for now

Gases: high CO2 +/- hypoxemia with acidosis. Bicarbonate low or normal



# **Summary of signs**





Weak limbs, face, neck, swallow

Cannot count 1 – 20

Anxious, sweaty

Cannot lie flat and diaphragm paradox

VC < 1.5 liters

Saturation may be OK until late



## Management

Call for help: Critical care

Ensure airway is safe

Sit up, Oxygen mask monitoring HR and Saturations. (90-92%)

Suctioning if secretions++

Nil by mouth

Blood gases

IV access

Chest X-ray for ? Infection

Further management for critical care and neurology



MF O'Donoghue





### Acute neuromuscular respiratory failure

## pH <**7.35** Pa 02 < **8** pKa PaCO2 >**6** pKa Bicarbonate low or normal

### Chronic

pH normal PaCO2 > 6 pKa Bicarbonate >26mmol/l



# **Chronic neuromuscular failure**



Usually in patients with known neuromuscular disease

Myotonic dystrophy, acid maltase deficiency or MND

Symptoms of nocturnal hypoventilation:

Morning headache and lethargy

Daytime hypersomnolence

Resting Saturation <95%

Assessed by overnight oximetry



## **Understanding check**



Called to patient with acute neuromuscular failure

- What are the two commonest causes?
- What is the best assessment of risk of needing ICU?
- What steps would you take at the bedside on arrival?

